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Abstract. Burgers’ equation is used to model sedimentation of colloidal suspensions in 
terms of solitary waves. The importance of diffusive terms is highlighted. Analytic 
expressions are given for the distribution of dispersed material and the wavefront velocities 
are calculated as functions of time. An explanation of observed sedimentation behaviour 
is provided along with a discussion of the important features of real sedimenting systems. 

1. Introduction 

We shall present some simple expressions for the variation of concentration profile 
with time in a model colloidal dispersion undergoing sedimentation. The results, which 
are exact within the model and which can be expressed in terms of a small number 
of easily interpreted parameters, provide a representation of sedimentation phenomena 
which facilitates immediate comparison with experiments. There are many important 
examples of these phenomena, in which a two-phase material is separated under the 
action of an external field (e.g. blood purification, food emulsion stability, oil recovery) 
but here we concentrate on general expressions rather than details of particular systems. 

The simplest observations of sedimentation show, for an initially homogeneous 
sample, the formation and propagation of a meniscus. Occasionally two menisci are 
observed moving towards each other and in special circumstances there may be several 
(Siano 1979). For a large part of the experiment the interface(s) travel parallel or 
antiparallel to the external field and apparently without change of form. Finally there 
is a single interface at rest separating essentially pure solvent from a concentrated 
sediment which has an amorphous structure. These facts suggest a one-dimensional 
solitary wave formulation of sedimentation which is previously unknown to the authors. 
The pertinent features will be seen to be included in a simple non-linear partial 
differential equation (Burgers’ equation) which is derived in 8 2. 

The detailed dynamics of colloidally sized objects supported in viscous fluid and 
placed in an external field have received extensive theoretical study. However the 
microscopic framework for evaluating the mobility tensors and settling velocities 
(Batchelor (1976, 1982), although recently extended to include size polydispersity 
(Batchelor 1982), repulsive interparticle interactions (Dickinson 1980) and many-body 
hydrodynamics (Mazur 1985)) is sufficiently complex to limit all results to low-order 
series expansions in the volume fraction 4 of the dispersed phase and therefore restrict 
applications to dilute systems. 

We may identify several aspects of real sedimenting colloids which hinder com- 
parisons with rigorous theoretical treatments. 
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( i )  Aggregation processes, both reversible and irreversible (coagulation), lead to 
the formation of time dependent cluster and size distributions even for inherently 
monodisperse systems. Brownian dynamics simulations of model colloids show that 
the underlying association and disassociation rates, and therefore the induced polydis- 
persity and the complex flows associated with the porous aggregates, are strongly 
influenced by the details of the interparticle interactions including the attractive 
portions. It is precisely these details which remain unknown in the majority of cases 
and which cannot be incorporated in the Batchelor formalism therefore limiting the 
range of fully self-contained microscopic calculations. 

(ii) The ability of many colloidal droplets to deform introduces (a )  significant 
changes in the pair distribution of the drops (Dickinson 1984) and therefore changes 
in the effect of interparticle forces and (b) unknown modifications of the direct and 
indirect (hydrodynamic) interparticle interactions themselves. The microscopic 
framework depends on rigid particles. 

(iii) The two-component picture is rarely realised in practice. Often the continuous 
phase contains a dissolved third component (polymer, electrolyte, polysaccharide) and  
may be inhomogeneous; alternatively surface active material may be present or the 
dispersed objects may be complex (irregular shapes, capsular, etc). 

Many of the unresolved problems will be absorbed by choosing a continuous field 
formulation with phenomenological dynamics. Within this scheme we shall build a 
model which allows qualitative comparison with the wealth of experimental results 
but remains sufficiently transparent to provide a reference for discussion of the impor- 
tant points above. Thus we consider monodisperse, noq-aggregating particles, 
sedimenting in an external field which varies in only one spatial direction y ,  and include 
all the details of dynamics and interactions into a single function J (  +, a + / a y )  represent- 
ing the flux of particles in a particular local environment. Here + = + ( y ,  t )  is a function 
of space and time and is the continuous field variable for our solitary wave picture. 
In  general J may have a complicated dependence on particle volume fraction but for 
simplicity we make a separation 

(1.1) 

where ~ ( 4 )  is a single-particle velocity function (which we expect to increase towards 
the Stokes value for decreasing 4 )  and S is a positive constant. Further restrictions 
on (1.1) will be made in the following section: we consider only small values of 6 and 
the simplest possible form for U(+). We have refrained from pursuing the computa- 
tional methods necessary for more complex velocity functions, thereby retaining 
analytic results. The extension is straightforward. 

The model presented will give the variation of volume fraction 4 ( y ,  t )  of a plug 
of dispersed phase material with known initial distribution located in an infinite tube 
between close packed sediment and pure solvent. When S<< 1 this can be used as an 
approximation to the behaviour observed in a finite tube where strictly the boundaries 
are fluxless. 

J ( + ,  J + / ~ Y )  = +U(+) - sa+/ay 

2. Burgers’ equation 

Our approach is based on the classical theory of sedimentation due to Kynch (1952) 
which assumes that the settling process is determined by local conditions and can 
therefore be formulated as a continuity equation for the dispersed phase. This has 
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recently been used by Anselmet et a1 (1985) to interpret experimental sedimentation 
data. We include an  extra small term in the particle flux (1.1) proportional to the 
concentration gradient and  thereby remove the sharp discontinuities present in Kynch 
solutions. At the same time we choose a linear velocity function 

U(+) = u,(1-4/4rn) (2.1) 

where uo and +m are constants; u0 is interpreted as the settling velocity of a single 
particle in unbounded fluid (Stokes' velocity) and 4m represents a maximum packing 
condition. Although more complex functions have been suggested for U( 4 )  (Buscall 
et a1 1982), equation (2.1) may always be regarded as a first approximation and contains 
the essential physics. In addition it allows us to circumvent the cumbersome method 
of characteristics or numerical integration and  obtain analytic solutions. 

In dimensionless form we may now write the continuity equation for the dispersed 
phase material as 

where the concentration c(y, e )  represents the volume fraction expressed in units of 
4,,,. All lengths are scaled by the length L of the inserted plug of non-equilibrium 
material (origin of y is taken as the base of the inserted plug and  the external field 
points along the negative y axis) and 0 is time scaled by luol/L. The small parameter 
in dimensionless form is E = 16/uoL/.  Equation (2.2) is Burgers' equation. A particular 
transformation due to Hopf and  Cole linearises (2.2) and leads to a formal solution 
(Witham 1974) 

' 3) 

c(y, e )  = 5 c(z, 0) exp(f(y, 8, z ) )  dz  (1 exp(f(y,  6, z ) )  dz ) - '  (2.3) 
--3c - X  

where 

f ( y ,  8, z ) = - ( y - z + 8 ) * / 4 ~ 8 + ( 1 / ~ )  C(z',O)dz'. (2.4) I' 
For the model outlined in § 1 we have initial concentration distribution 

C(Y, 0) = 1 Y < O  

= c ( y )  O S y S l  

= O  Y'1 

and the exterior portions of the integrals (2.3) yield straightforward results: 

[-: exp(f (y ,  8, z ) )  d z  = c(z, 0) exp(f(y, 8, z ) )  d z  

= exp((c,-y)/e) erfc[(y - e)/(4&e)' / ' ]  

l lmerp ( f (y ,  8, z)) dz=(me)1 '2e r fc [ ( l  - ~ - 8 ) / ( 4 e 8 ) " ~ ]  

where co = 
c(y, 8 )  therefore requires 

c (y)  dy  is the initial non-equilibrium material. Complete evaluation of 

(2.7) 
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In a realistic example the initial distribution has discontinuities at y = 0, 1 and these 
result in the dominant features or ‘steps’ in the evolving profile. We define their 
positions by a maximum gradient or d2c/dy’ = 0 which is consistent with the contrast 
determinations of this position commonly employed in the experimental work. 
Differentating (2.3) twice we obtain 

0 = c’+ ac+ b (2.8) 

where 
- I  

a = -1 ( C ’ ( Z ,  0) - m ( z ,  o ) / a z )  exp(f(y, 6, z ) )  dz( Ix exp(f(y, 8, z ) )  dz) 
--I - x  

(2.9) 
Cr 

b = ( c 7 (  Z, 0) - 3 F C (  Z, O)dc( Z, I-, 
+ E 2 d 2 C ( z ,  O ) / d z ’ )  exp(f(y, 6, z )  dz  (5 ’  e x p ( f ( x  6 , z ) )  dz)-’.  

-T 

(2.10) 

Equation (2.8) is an implicit relation between step position and time. In  all but the 
simplest cases a numerical solution is required. 

The origin of the diffusive flux in (1.1) has been discussed in detail by Batchelor 
( 1976). The classical theory of Brownian motion extended to non-equilibrium systems, 
and therefore including hydrodynamic as well as direct particle-particle interactions, 
leads to a generalised force which accounts for diff usive transport in inhomogeneous 
systems. Since it is apparent that a sedimenting dispersion contains highly 
inhomogeneous regions the third term in (2.2) cannot be neglected. However simple 
estimates of the size of the parameter, - k T /  Lmg ( m  is particle mass, T temperature 
and k Boltzmann’s constant), are smaller than required by comparisons with experi- 
mental profiles. The non-ideal features of sedimentation listed above may contribute 
to this discrepancy (for example, by causing smaller particles to congregate at the 
interface). However there are two significant features associated with the fact that the 
important particles in the determination of F are those located around sharp steps in 
concentration. First, Pusey and Tough (1982) have pointed out that Batchelor’s 
approach is relevant for timescales which are much bigger than velocity fluctuation 
times caused by fluid particle impacts yet much smaller than a ‘structural relaxation’ 
time. In the vicinity of the interface the statistical properties of the particle velocities 
may be a consequence of spatial configuration so that collective processes on larger 
timescales could be relevant. Second, the particulate environment changes very rapidly 
as we move through the interface causing relevant length scales to be shorter. This 
may invalidate the continuum approximation for the suspending fluid and necessitate 
a full multicomponent microscopic treatment surrounding the meniscus. 

In the following section F is used as the only variable parameter. Quantitative 
interpretation requires detailed specification of the particular systems involved. 

3. Results and discussion 

The majority of experimental investigations begin with a uniform distribution of 
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dispersed material. In this case c ( y )  = co and integrals in (2.3) are completed by 

I ~ =  (T&e)’ /*  exp{co[l - y -  e( i  - c 0 ) / ~ ~ { e r f c [ ( 2 ~ c o - y -  e ) / ( 4 ~ e ) ’ / * ]  

-erfc[(l - y  - e + 2 e ~ , ) / ( 4 ~ e ) ’ / ~ ] }  (3.1) 

I, =col , , .  (3.2) 

Combining equations (3.1) and (3.2) with (2.5) and (2.6) we may compute the full 
concentration profiles. Figure 1 shows the evolution of an initially flat or constant 
profile with c,, = 0.3, E = 0.015 from small 0 until an equilibrium is achieved (broken 
curve). The curves show two ‘tanh-like’ solitary waves which propagate towards each 
other from initial positions y = 0, 1. These features are localised and therefore the 
initial profile is undisturbed until approached by one of the waves. Finally the two 
fronts coalesce and ‘stiffen up’ into an  equilibrium profile around y = c,,. In figure 1 
two steps are discernable for 0 s  1. At larger values of E both steps are more diffuse. 
Also a larger disparity between the sizes of the two steps reduces the definition of the 
smaller. In some cases (e.g. co = 0.2, E = 0.04) these factors combine to make a single 
shock or wavefront the dominant feature. 

and 

1 .o 

C 

0.5 
Y 

Figure 1. Distribution of dispersed material at 0 = 0.0001, 0.1, 0.2, 0.4, 0.8 and 8.0 (broken 
curve). The initial distribution is uniform with co = 0.3, E = 0.015. The external field is 
directed along the negative y axis. 

For a uniform initial distribution we may write equation (2.8) in a particularly 
simple form. All the derivatives in (2.9) and (2.10) are zero and we write contributions 
to the denominator of (2.3) from (2.51, (3.1) and (2.6) as f, Q and R respectively. 
Positions of the wavefronts are now given by 

If R is insignificant ( 6  << 1, y = 0) we have P = Q and from (3.1) and (2.5) the solution 
y = coo. Similarly for 0 << 1, y 1 we obtain y = 1 - (1 - c,)O. Thus for small 0 the two 
shocks have constant velocities coluo~ and - (  1 - co)luol. For larger times the simple 
form of (3.3) allows us to follow the roots numerically. Figure 2 shows the variation 
of the velocity of the major shock (in units of /uol) with e for E = 0.03 and  eo = 0.1-0.4. 
The second smaller shock gathers speed towards y = c,] but disappears as the waves 
coalesce. Figure 2 clearly shows a change of behaviour as co is increased. The curves 
representing higher values of initial concentration show a region of acceleration (which 
is enhanced by higher values of E )  prior to decelerating to equilibrium. This effect is 
associated with the change of value of concentration for which our shock condition 
holds. Using (2.2) we can express the full derivative as 

(3.4) 

0 = ( - 1)3PQ( P - Q )  + P R (  R - P )  + c;QR( R - Q )  + ( 2 ~ :  - 3 ~ :  - 3co+ 2)PQR. (3.3) 

d y l d o  = (2c - l ) +  ( a y / a c ) ( a c / a e )  + E(a,v/ac)(d2c/ay’).  
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e 
Figure 2. Major shock velocity (units o f  I U , ~ )  as  a function of 0 for c,=O.l, 0.2, 0.3, 0.4 
and  E = 0.03. The initial material distribution is uniform. 

Initially the waves propagate without change of form and the first term alone determines 
the velocity of the fronts but as the waves collide the second term is relevant. The 
major shock transfers from c = (1 + c,)/2 ( 0  << 1) to c = $ at equilibrium and hence it 
is for higher initial concentrations that the dc/dtI term is most important. 

Recently Anselmet et a1 (1985) have presented measurements of the upper meniscus 
position in a sedimenting suspension of monodisperse spheres and identified two 
regimes, namely initial concentrations above or below the concentration of maximum 
flux cM,  which show qualitatively different behaviours. For co < cM planes of constant 
concentration c0/2 show a single sedimentation velocity followed by an abrupt halt 
whereas for c,, > cM there is a prolonged continuous deceleration of the interface. The 
interpretation of Anselmet et al, using the theory of Kynch (1952) (i.e. no diffusive 
terms) with a non-linear velocity function, involves a constant size but stiffening 
discontinuity for co < cM and a growing discontinuity for co > c M .  The experimental 
results are unable to confirm these features. 

In  contrast the solutions (2.3) propagate without change of form for long periods. 
For planes of constant concentration the second term in (3.4) is zero but velocity 
changes can result from the third term (also zero in the Anselmet et a1 consideration) 
with increasing importance for larger co. This term is also sensitive to small gradients 
in the initial distribution leading to a continuously variable meniscus velocity. Figure 
3 gives the speed of planes c = co/2 for E =0.015, c,,=O.O5, 0.65 (note for our linear 
function cM = 0.5) and  an  initial gradient Ac/ c,, = 0.05. There is a period of much 
larger deceleration for co=0.05 and a steadily decreasing velocity for c,,=O.65 in 
qualitative agreement with the observations of Anselmet et al. With no initial gradient 
the effects at large values of co are less pronounced. 

Figure 3 also shows an  enhanced meniscus velocity at very small times. This is a 
result of relaxation from the initial discontinuous distribution into a steady profile. 
Generally planes of constant concentration at non-symmetric points in the profile (i.e. 
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0 0 4  0.8 1.2 1.5 
e 

Figure 3. Velocity of plane c = c,/2 (units of luol) as a function of 0 for c, = 0.05, 0.65 and 
E = 0.015. The initial material distribution has a gradient Ac/c, = 0.05 in the direction of 
the external field. 

planes other than (1 + c0)/2 and  c,/2 in initially flat profiles) have an initial motion 
relative to the symmetric point which contributes to the velocity through the third term 
in (3.4). In particular when the initial profile has a slope the symmetry point shifts as 
the meniscus moves and therefore plane c = c0/2 also exhibits this behaviour. Transient 
effects in which part of the meniscus travel faster than the Stokes’ velocity of the 
constituent particles are possible for small concentration steps. By adopting the contrast 
definition we can isolate the meniscus velocity from releative motion in the interface. 

Solutions of equation ( 2 . 2 )  are not restricted to the uniform initial distributions 
discussed above. Analytic solutions can be obtained for any piecewise linear or 
quadratic c ( y ) .  As an  example consider the evolution of an initial ramped sawtooth 
distribution of very low overall concentration, c0 = 0.01, shown in figure 4. A staircase 
pattern persists for a considerable period and  propagates, lower steps most rapidly, 
into the small sediment. This layered sedimentation behaviour has been observed in 
dilute supensions of polystyrene spheres by Siano (1979). The initial formation may 
result from either local fluctuations of concentration which are enhanced and  tilted 
by the gradient set up in an  initial sedimentation process or  from a phase separation 
phenomenon recently discussed by Hagan and Cohen (1985). 

Using a two-fluid model and a variational derivation of the equations of motion 
Hill et a1 (1980) were able to obtain a representation of erythrocyte sedimentation in 
human whole blood which naturally included diffusive terms. The particle dynamics 
were included through an empirical drag coefficient as a function of 4. The numerical 
results are in reasonable agreement both with experimental concentration profiles 

Y 

Figure 4. Distribution of dispersed material at 0 = 0.0001, 0.2, 0.4 and 1.5. The initial 
material distribution is a ramped sawtooth with c,=O.Ol, E =0.001. The external field is 
directed along the negative y axis. 
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(Whelan et a1 1971) and with our analytic treatment confirming the importance of 
dissipative effects. 

Although our results are for the simplest possible non-linear dissipative system 
they have the capacity to successfully represent a wide variety of sedimentation results 
and also form a prototype for extensions to numerical work. In  this respect the precise 
forms of u ( 4 )  and any functional dependence of E d o  not present serious problems. 
However, any discussions of wall effects on sedimentation (Beenaker and  Mazur 1985) 
are incompatible with our one-dimensional approach, the inclusion of polydispersity, 
in any form, is severely hampered by the non-linearity of Burgers' equation, and our 
approach via a continuity equation prevents consideration of inertial effects. 

Clearly our results support continued improvement of non-intrusive scanning of 
full concentration profiles. They also show that more rigorous definition and resolution 
in optical determinations of meniscus positions, and therefore velocities, are justified. 
Finally our results indicate that a detailed specification of initial conditions is required 
for quantitative discussion of sedimentation experiments. 
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